Structural basis for the transition from initiation to elongation transcription in T7 RNA polymerase.

نویسندگان

  • Y Whitney Yin
  • Thomas A Steitz
چکیده

To make messenger RNA transcripts, bacteriophage T7 RNA polymerase (T7 RNAP) undergoes a transition from an initiation phase, which only makes short RNA fragments, to a stable elongation phase. We have determined at 2.1 angstrom resolution the crystal structure of a T7 RNAP elongation complex with 30 base pairs of duplex DNA containing a "transcription bubble" interacting with a 17-nucleotide RNA transcript. The transition from an initiation to an elongation complex is accompanied by a major refolding of the amino-terminal 300 residues. This results in loss of the promoter binding site, facilitating promoter clearance, and creates a tunnel that surrounds the RNA transcript after it peels off a seven-base pair heteroduplex. Formation of the exit tunnel explains the enhanced processivity of the elongation complex. Downstream duplex DNA binds to the fingers domain, and its orientation relative to upstream DNA in the initiation complex implies an unwinding that could facilitate formation of the open promoter complex.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Topological and conformational analysis of the initiation and elongation complex of t7 RNA polymerase suggests a new twist.

The N-terminal domain of T7 RNA polymerase undergoes large conformational changes in the transition from transcription initiation to elongation. The rigid body displacement of parts of the N-terminal domain (residues 72-152 and 204-258) has been described as a screw motion composed of a rotation by 140 degrees and a translation of >20 A along the rotation axis. Protein-protein interactions betw...

متن کامل

Twisted or shifted? Fluorescence measurements of late intermediates in transcription initiation by T7 RNA polymerase.

T7 RNA polymerase undergoes dramatic structural rearrangements in the transition from initiation to elongation. Two models have been proposed for promoter-bound intermediates late in the transition. (i) A subset of promoter interactions are maintained through completion of the protein conformational (twist) change, and (ii) concerted movement (shift) of all promoter-binding elements away from t...

متن کامل

Real-time observation of the transition from transcription initiation to elongation of the RNA polymerase.

The transition from initiation to elongation of the RNA polymerase (RNAP) is an important stage of transcription that often limits the production of the full-length RNA. Little is known about the RNAP transition kinetics and the steps that dictate the transition rate, because of the challenge in monitoring subpopulations of the transient and heterogeneous transcribing complexes in rapid and rea...

متن کامل

Structural Transitions Mediating Transcription Initiation by T7 RNA Polymerase

During transcription initiation, RNA polymerases appear to retain promoter interactions while transcribing short RNAs that are frequently released from the complex. Upon transition to elongation, the polymerase releases promoter and forms a stable elongation complex. Little is known about the changes in polymerase conformation or polymerase:DNA interactions that occur during this process. To ch...

متن کامل

Promoter binding, initiation, and elongation by bacteriophage T7 RNA polymerase. A single-molecule view of the transcription cycle.

A single-molecule transcription assay has been developed that allows, for the first time, the direct observation of promoter binding, initiation, and elongation by a single RNA polymerase (RNAP) molecule in real-time. To promote DNA binding and transcription initiation, a DNA molecule tethered between two optically trapped beads was held near a third immobile surface bead sparsely coated with R...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Science

دوره 298 5597  شماره 

صفحات  -

تاریخ انتشار 2002